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Purpose. To use artificial neural networks for predicting dissolution
profiles of matrix-controlled release theophylline pellet preparation,
and to evaluate the network performance by comparing the predicted
dissolution profiles with those obtained from physical experiments
using similarity factor.
Methods. The Multi-Layered Perceptron (MLP) neural network was
used to predict the dissolution profiles of theophylline pellets con-
taining different ratios of microcrystalline cellulose (MCC) and glyc-
eryl monostearate (GMS). The concepts of leave-one-out as well as a
time-point by time-point estimation basis were used to predict the
rate of drug release for each matrix ratio. All the data were used for
training, except for one set which was selected to compare with the
predicted output. The closeness between the predicted and the
reference dissolution profiles was investigated using similarity
factor (f2).
Results. The f2 values were all above 60, indicating that the predicted
dissolution profiles were closely similar to the dissolution profiles
obtained from physical experiments.
Conclusion. The MLP network could be used as a model for predict-
ing the dissolution profiles of matrix-controlled release theophylline
pellet preparation in product development.
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similarity factor; drug dissolution profiles.

INTRODUCTION

Advances in the area of soft computing have resulted in
the development of a variety of intelligent systems. One of the
more popular soft computing techniques, artificial neural net-
works (ANNs), has been developed and used as a problem-
solving tool in various fields, among them pattern recognition
and classification, signal and image processing, robot control,
weather prediction, financial forecasting, and medical diag-
nosis (1). In general, ANNs are generalizations of mathemati-
cal models of biological nervous systems in our brain. One
key benefit of ANNs is their ability to build a model of the
problem using data from experimental measurements of the
problem domain. Rather than being programmed by a user in
a traditional sense, ANNs gather their knowledge by learning
relationships of variables in data and building a model, im-

plicitly, to relate the input and output variables of the prob-
lem.

Lately, ANNs have been applied to solve problems in the
pharmaceutical fields, such as pharmaceutical process optimi-
zation, product development, prediction and estimation of
pharmaceutical process coefficients, and pharmacokinetic pa-
rameters (2–6). Takahara et al. (2,3) demonstrated that the
multi-objective simultaneous optimization technique incorpo-
rating ANNs was useful in optimizing formulae for pharma-
ceutical responses that are nonlinearly related to the process
variables. Hussian et al. (4) showed that ANNs were able to
predict the response variables that characterized the drug re-
lease profile of a hydrophilic matrix capsule system, more
precisely than the response surface methodology. In another
study (5), ANNs were used to predict pharmacokinetic pa-
rameters in human based on animal data. In addition, ANNs
were reported to possess added advantages over some theo-
retical approaches in pharmaceutical data analysis (6).

For instance, the theoretical approach of nonlinear
mixed effect modeling employed mathematical formulae to
build a model that described the behavior of some pharma-
cokinetic processes (6). However, this approach may fail if the
underlying principles governing the processes are not suffi-
ciently understood, because the results are dependent on the
accuracy of the model. On the other hand, ANNs are basically
a data-based learning approach that does not require specific
pharmacokinetic model in prediction.

Among the many possible ANN architectures, the multi-
layer perceptron (MLP) network (7) is one of the most widely
used. This network has been proven to be a universal approxi-
mator (8). When given sufficient processing elements, it can
approximate any nonlinear function with arbitrary accuracy.
Since predicting drug release profiles can also be viewed as a
function approximation problem, the MLP network has been
selected in the present study.

The objective of the present study was to utilize the MLP
network to predict the in vitro dissolution profiles of a matrix-
controlled release theophylline pellet preparation. Empiri-
cally, mathematical models are used to represent behaviors
and dynamics between various interacting components in
many pharmaceutical processes. Hitherto, other researchers
(2–6) used ANNs to predict the formulation and/or process
parameters based on certain mathematical models that char-
acterize the dissolution profiles. Instead of estimating param-
eters that fit models of the profiles as conducted by other
researchers, we employed in the present study a different
approach in prediction, by treating the entire dissolution pro-
file as a time-series curve and estimating the whole profile
based on a time-point by time-point estimation basis. Each
time point was used as a dependent feature in which infor-
mation contained in one time point affected further predic-
tions subject to subsequent inputs. In addition, the network
performance was evaluated by comparing the predicted dis-
solution profiles with those obtained from physical experi-
ments using similarity factor (9–12).

MATERIALS AND METHODS

Development of Pellets and In vitro Drug Release Studies

The development and the in vitro dissolution studies of
the matrix-controlled release theophylline pellet preparations
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have been described elsewhere (13). A series of formulations
containing a constant proportion of theophylline, but differ-
ent proportions of microcrystalline cellulose (MCC) and glyc-
eryl monostearate (GMS) at ratios of 10:10:0, 10:8:2, 10:7:3,
10:6:4, 10:5:5, and 10:4:6 were prepared. The GMS was first
dispersed in a sufficient quantity of distilled water heated at
about 80°C, followed by the addition of theophylline with
constant stirring until a slurry was formed. The hot slurry was
immediately mixed and blended with MCC in the Kenwood
planetary mixer for 10 min. The wet powder mass was then
extruded at a displacement rate of 30 cm/min using a Ram
Extruder (SDX, Penang, Malaysia) fitted with a single-holed
die of hole 1 mm in diameter and 4 mm in length. The extru-
dates were spheronized using a 22.5 cm Spheroniser (GB Ca-
leva, Ascot, Berks, TJK) at 1000 rpm for 10 min. The spheri-
cal pellets obtained were dried in a fluidized bed drier at 40°C
for 30 min.

The in vitro drug release was determined using the
paddle method of the USP 23 dissolution test apparatus. The
test was conducted in 900 ml of distilled water maintained at
37 ± 0.5°C with a paddle rotation speed of 100 rpm. Samples
of the 3 ml volume were collected at predetermined time
intervals of 0, 0.25, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, and 10.0
hours. The drug concentrations were determined at 273 nm
using a spectrophotometer (Hitachi, Tokyo, Japan) after ap-
propriate dilution. Each test was run in sets of six and the
average percentage of drug release versus time was calculated
and plotted.

Profile Prediction Using Artificial Neural Networks

The MLP network generally can be exemplified as a
feedforward type of ANN comprising a number of layers,
namely, the input layer, one or more hidden layers, and the
output layer. Each layer consists of a number of artificial
neurons known as processing elements or nodes. An example
of a three-layer MLP network is depicted in Fig. 1. The nodes
in neighboring layers are fully connected with links that store

the modifiable strength connections called weights. Nodes in
the hidden layer receive input signals from the nodes in the
input layer. These inputs are weighted by the connection
strengths and then linearly summed to produce the net neu-
ron internal activity level as follows:

cj = (
i=1

p

wijxi

where wij is the weight from node i in the input layer to node
j in the hidden layer, xi is the i-th input element, and p is the
number of nodes in the input layer. Generally, a sigmoid/
logistic function is used to regulate the linearly combined
output of a node, as follows:

oj = w~cj! =
1

1 + exp~−cj!
−` < cj < `

where oj is the output of the j-th node in the hidden layer.
Subsequently, output from the hidden layer is used as input to
the output node. Finally, the overall response from the net-
work is obtained via the output node in the output layer.

In the present study, the NEURAL program (14) was used
to implement the MLP network. The conjugate gradient and
simulated annealing algorithm were used to train the MLP
network. The conjugate gradient is a useful method to mini-
mize the mean-squared error function, and is generally faster
and more robust compared with the traditional backpropaga-
tion algorithm. While the conjugate gradient algorithm is ef-
fective at finding the nearest minimum point from the starting
weights, this might be a local minimum of the error function.
It is therefore imperative for MLP to escape from local
minima of the error function during training. To achieve this,
simulated annealing (14) can be used to get away from the
current point to a lower point, and eventually to arrive at the
global minimum of the error function. Hence, in the training
of MLP it is useful to combine the local power of the conju-
gate gradient with the global power of simulated annealing to
attain a global minimum among local minima (14). In addi-
tion, genetic optimization is used for weight initialization in
the MLP network. Like simulated annealing, the genetic al-
gorithm is a stochastic search technique that can elude local
minima. It works with a population of strings encoding pa-
rameters of the function to be optimized, and searches many
solution points in parallel. Genetic operations such as repro-
duction, crossover, and mutation are used to create strong
traits that would optimize the function, and this is suitable for
finding starting weights.

The concept of leave-one-out was used to predict the rate

Table 1. The Mean f2 Values Obtained from the MLP Network with
Varying Numbers of Hidden Nodes

MCC:GMS

Number of hidden nodes

4 6 8 10

4:6 68.5 68.9 69.6 66.9
5:5 82.2 82.5 82.0 78.0
6:4 86.9 86.8 86.4 85.7
7:3 82.8 84.9 84.2 83.6
8:2 80.2 79.6 74.3 76.7
10:0 59.7 63.2 54.9 61.3

Fig. 1. A three-layer MLP network.
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of drug release. In the experiment, all, the dissolution data
were used for training except one set, which was used to
compare with the predicted output. For example, data sets of
MCC and GMS at ratios of 10:0, 8:2, 7:3, 6:4, and 5:5 were
used to train the network and to predict the release profile of
ratio 4:6. Since dissolution studies were run in sets of six for
each matrix ratio, there were a total of 30 training samples.
Each training sample comprised four inputs and one output.
The first two inputs represented the matrix ratio, the third
input represented the time point of the measurement of per-
cent dissolved, and the fourth one encoded the difference
between the release rate of the preceding two time points of
the predicted profile. This fourth input was essentially a sec-
ond derivative (rate of change of the slope) of the percent
dissolved against time curve for the previous two time points
of the network predicted profile. Prediction of the dissolution
profile was conducted based on a time-point by time-point
basis, with a total of eleven time points (0, 0.25, 0.5, 1.0, 1.5,
2.0, 3.0, 4.0, 6.0, 8.0, and 10.0 hours) to obtain a complete
dissolution profile. Since information on the rate of change of
the slope was not available for the first and second time
points, the fourth input was set to zero and to the predicted
percent dissolved from the first time point respectively.

Six dissolution profiles were generated from the network
for each matrix ratio and each profile was used to compare
with one of the six dissolution profiles obtained from the
physical experiment. This approach provides an alternative
prediction of the dissolution profile as a whole time-series
curve using ANNs, compared with predicting the parameters
of certain models that fit the dissolution profile, a technique
normally employed by other researchers. As a result, errors in
parameter estimation as well as in mathematical modeling of
the dissolution profile can be reduced.

Performance Measurement Using Similarity Factor

Dissolution profiles predicted from the MLP network
was compared with those generated from physical experiment
using similarity factor (f2). The similarity factor is a function
of the reciprocal of mean square-root transform of the sum of
square distances at all points, and is a measure of the simi-
larity in the percent rate of drug release between two disso-
lution profiles. The value of f2 ranges between 0 to 100 with
a higher f2 value indicating more similarity between the two
profiles. The equation of f2 is expressed as follows:

Similarity factor, f2 = 50 ? log$@1 + ~1/n!(
t=1

n

~mti − mri!
2#−1/2 ? 100%

where mri and mti represent the percentage of drug dissolved
measured at the i-th time point of the experimental and pre-
dicted curves, and n is number of time points tested.

RESULTS AND DISCUSSION

In ANN applications, a problem that often encountered
is the determination of the “optimal” number of hidden
nodes. Normally, one has to resort to empirical methods to
obtain a good network structure that can produce satisfactory
performance. Table 1 summarizes the mean f2 values from
experiments with different matrix ratios of MCC and GMS,
using four, six, eight, and ten hidden nodes. We can see that
six hidden nodes yielded, on average, the best performance.
As such, the MLP network with six hidden nodes was selected
throughout all the experiments.

Table 2 shows the complete results comprising f2 values
from individual predictions as well as the mean f2 values from
six trials using different matrix ratios of MCC and GMS. The
performance of the MLP network appeared to be satisfactory
as the f2 values for all the matrix ratios were above 60. The
small coefficient of variation values of less than 6.5% sug-
gested that the dissolution profiles generated from the net-

Table 2. The f2 Values of Varying Matrix Ratios of MCC and GMS Obtained Using Six Hidden Nodes

MCC:GMS P1 P2 P3 P4 P5 P6 Mean SDa CV%b

4:6 70.4 64.2 65.5 66.2 74.5 72.4 68.9 4.2 6.1
5:5 80.1 77.1 83.3 82.1 84.0 88.1 82.5 3.7 4.5
6:4 87.0 83.8 87.9 89.1 86.4 86.4 86.8 1.8 2.1
7:3 84.7 85.1 80.5 83.2 88.5 87.2 84.9 2.8 3.4
8:2 80.0 82.8 77.8 75.0 81.5 80.4 79.6 2.8 3.5
10:0 60.2 61.1 67.6 63.3 63.4 63.3 63.2 2.6 4.1

a Standard deviation.
b Coefficient of variation.

Fig. 2. The percentage of drug dissolved (output) against the two
principal components of the input features extracted using principal
component analysis.
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work had little variation and the performance of network was
stable.

We noticed that the results of f2 with matrix ratios of 4:6
and 10:0 were inferior compared with those from other matrix
ratios. This might be due to the phenomenon of interpolation
and extrapolation in network training. As we know, efficacy
of an ANN, as well as other statistical approaches such as
logistic and multiple regression methods, is very much af-
fected by the training data. Typically, the network would per-
form better in interpolation compared with extrapolation of
the training data. Here, we use a graphical approach to visu-
alize the distribution of the training data in a three-
dimensional space. To accomplish this, the principal compo-
nent analysis (15)—which was an effective procedure fre-
quently used to reduce the dimension of the input features in
ANN applications—was used. It was found that the original
four-dimensional training data could be reduced to two-
dimensional data that were a linear combination of the origi-
nal data. From the analysis, the first and second principal

components represented more than 75% of the original train-
ing data. Hence, to give a visualization of the relationship
between the training data and outputs, the first two principal
components against the percentage of drug dissolved was
plotted as shown in Figure 2. It can be seen that the data
samples from MCC and GMS at ratios of 4:6 and 10:0 were
scattered at the outer regions of other (5:5, 6:4, 7:3, 8:2) data
samples. Therefore, the profile prediction of matrix ratios of
4:6 and 10:0 could be considered as extrapolating the under-
lying function because these two data samples were distrib-
uted outside the training data range. This observation might
explain inferiority of the predicted results for matrix ratios of
4:6 and 10:0 compared with that of other ratios.

Figure 3 shows the mean dissolution profiles obtained
from network and physical experiment for various matrix ra-
tios. It can be seen that an increase in f2 value was associated
with more similarity between the predicted and the experi-
mental dissolution profiles. In view of the f2 values, the mean
dissolution profile generated from the network could be con-

Fig. 3. Mean drug dissolution profiles obtained from network (d) and physical experiment (j) for theophylline pellets
consisting of various compositions of microcrystalline cellulose (MCC) and glyceryl monostearate (GMS). (A) 4:6, (B) 5:5,
(C) 6:4, (D) 7:3, (E) 8:2, and (F) 10:0.
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sidered similar to that of the physical experiment for all the
matrix ratios evaluated.

From findings in the present study, the benefit of using
ANNs in product development, especially in the prediction of
dissolution profiles, is evident. Instead of determining the dis-
solution profile of each and every matrix ratio by conducting
actual physical experiments, a suitable ANN system can be
used to predict the trend of the drug dissolution profile, which
is associated with the composition of the matrix materials. By
using this approach, a lengthy and time-consuming experi-
mentation to determine the appropriate matrix ratio for the
preparation can be shortened. When a satisfactory release
profile is obtained, a confirmation test can then be carried out
experimentally to verify the predicted profiles.

CONCLUSIONS

In summary, ANNs—specifically the MLP network—
could be used as a model for the prediction of in vitro disso-
lution profiles of matrix-controlled release theophylline pellet
preparation during product development. The f2 results indi-
cated that the predicted dissolution profiles were closely simi-
lar to those obtained from the physical experiments for dif-
ferent matrix ratios. The present study has demonstrated the
potential of ANNs as a useful tool in predicting drug disso-
lution profile as a time-series curve. Nevertheless, it would be
beneficial to conduct further investigations into the stability
and reliability aspects of using ANNs in pharmaceutical prod-
uct development.
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